
Writing effective 

asynchronous 

XmlHttpRequests

Thibaud Lopez Schneider

thibaud_lopez@yahoo.com

May 27, 2008

The XmlHttpRequest object is very popular in web

development as it allows execution of all sorts of

1

development as it allows execution of all sorts of

functionality in the background of web pages. The

Internet is full of tutorials and examples that illustrate

how to implement it, and it is being standardized by the

W3C.

However, when it comes to assemble a large indefinite

number of XmlHttpRequests, in intricate ways like in

conditional statements or in loops, and in synchronous

mode mixed with asynchronous mode, then the

tutorials and examples fall short, and web developers

are left alone to their own trials and errors.

This document proposes simple rules to effectively

transform code from synchronous XmlHttpRequests to

asynchronous. This document is important where

stability, quality and usability are important. The result

could also be integrated in AJAX tools.



Table of contents

Single request

Multiple requests

Definitions
Synchronous page 6

Asynchronous page 10

Serial page 16

Parallel page 21

Synchronous Asynchronous

Single

Design pattern 1

page 8

Design pattern 2

page 12

Serial Parallel

Synchronous Asynchronous Asynchronous

Multiple

Design pattern 3

page 17

Design pattern 4

page 19

Design pattern 5

page 23

Rules
Rule #1 - Split page 12

Rule #2 - Copy page 28

2

Conditional statements

Loop statements

Synchronous Asynchronous

if-then-else

Design pattern 6

page 27

Design pattern 7

page 29

switch

Design pattern 8

page 30

Design pattern 9

page 31

Serial Parallel

Synchronous Asynchronous Asynchronous

for

Design pattern 10

page 33

Design pattern 11

page 35

Design pattern 12

page 37

while

Design pattern 13

page 39

Design pattern 14

page 40

Design pattern 15

page 42

do-while

Design pattern 16

page 43

Design pattern 17

page 44

Design pattern 18

page 46



Dilemma

How do I send 100 XmlHttpRequests?

3



• So I changed the request to asynchronous. 

Now the browser sent all the requests at 

almost the same time. Unfortunately, the 

ERP couldn’t process more than one order at 

a time, it accepted the first request, locked 

the database, and rejected the other 

requests.

Dilemma

How do I send 100 XmlHttpRequests?

• Let’s suppose I have a shopping cart with 

something like 100 items, let’s suppose I 

only have the possibility to write my 

business logic on the client-side (not on the 

server-side), and let’s suppose I will process 

each item of the shopping cart with one 

XmlHttpRequest. Now, how do I send 100 

XmlHttpRequests? Remember we are in a 

fictitious case were we can only write that 

4

• Then I started asking myself tricky questions 

like how do I create a loop of asynchronous 

requests knowing that at each iteration I 

have to wait for the response of the 

previous request? And what happens if one 

of the requests fails?

• As I couldn’t find any help on the Internet I 

set myself to write this document and make 

it public.

fictitious case were we can only write that 

business logic on the client-side.

• First, I wrote one request to process one 

item from the shopping cart. Then, I 

enclosed that request in a loop to process 

the entire shopping cart. It was easy and it 

worked. But because the requests were 

synchronous the browser hung for several 

minutes while the loop was processing. 

Meanwhile, the users saw a blank screen, 

killed the browser and tried again, resulting 

in user frustration and double requests.



Anatomy of

one XmlHttpRequest

5

one XmlHttpRequest



• An XmlHttpRequest can be synchronous. 

The browser sends the request, pauses the 

code, waits until it receives the response or 

until the connection times out, and then 

resumes the code.

• Synchronous requests are the most natural 

and easy to code. They are preferred when 

1. Synchronous request

Definition

6

and easy to code. They are preferred when 

high readability and maintainability are 

important.

• But during that process the browser freezes 

(or hangs) resulting in a blank screen. It’s 

not even possible to give feedback to the 

user (indicate activity, show progress). So 

the user may kill the browser and try again, 

resulting in user frustration and double 

requests. That’s poor usability.



// send the request

var request = createXmlHttpRequest();

1. Synchronous request

Example

7

request.open("GET", "page.html", false);

request.setRequestHeader("Content-Type", "text/plain");

request.send();

// do something with the response

request.responseText;



1. Synchronous request

Pseudo-code

Design pattern 1

function f() {

pre-request

request

8

function f() {

request

response

}

request

something

response

post-response

}

Variation



request

serverclient

1. Synchronous request

Sequence diagram

9

request

response
browser locked



• On the other hand, an XmlHttpRequest can be 

asynchronous. The browser sends the request, 

and continues to execute the code. Then, when 

the browser receives the response it fires an 

event that is caught by an event handler.

• The browser does not freeze so it’s possible to 

give feedback to the user (indicate activity, show 

progress).

2. Asynchronous request

Definition

10

progress).

• But as the caller and the event handler are in two 

separate functions it affects return values (cannot 

return values to the caller), local variable 

accessors (response doesn’t have access to 

request’s local variables unless if closure or 

transferred), looping (the post-loop of 

asynchronous requests is executed before the 

responses which can result in unexpected 

behavior), exceptions, and branching statements. 

So the code must be adapted and it’s less easy to 

write and read, mostly if there are multiple 

intricate requests.



// send the request

var request = createXmlHttpRequest();

request.open("GET", "page.html", true);

request.onreadystatechange = handler;

request.send();

2. Asynchronous request

Example

11

function handler() {

if (request.readyState == 4 && request.status == 200) {

// do something with the response

request.responseText;

} else {

// do something else

}

}



function f() {

request

2. Asynchronous request

Pseudo-code

Design pattern 2

12

request

}

function f’() {

response

}Split the synchronous (Design pattern 1) to 

get the asynchronous (Design pattern 2)

function f() {

request

response

}

Rule #1



function f() {

pre-request

request

something

2. Asynchronous request

Split

function f() {

pre-request

request

}
function f() {

pre-request

13

something

}

function f’() {

response

post-response

}

Incorrect split

}

function f’() {

something

response

post-response

}

Correct split

pre-request

request

something

response

post-response

}

Design pattern 1



2. Asynchronous request

Sequence diagram

server
event 

handler
client

request

14

response
browser not locked

request

any code



Anatomy of

several XmlHttpRequests

15

several XmlHttpRequests



Serial requests

Definition

• We can write code to send multiple requests 

in serial. The browser sends a request and 

receives the response. Only when it received 

the response it sends another request and 

receives another response, etc., until all the 

requests are sent.

• Serial XmlHttpRequests can be synchronous 

16

• Serial XmlHttpRequests can be synchronous 

or asynchronous. If they are asynchronous 

the code must be carefully crafted. 

• Serial requests are the most natural to code 

as they mimic sequential programming.

• Serial is necessary when a request depends 

on the response of a previous request, or 

when the server cannot handle more than 

one request at a time.

• But serial requests don’t benefit from the 

parallel processing abilities of servers.



function f() {

pre-requests

request1
response1

3. Serial synchronous requests

Pseudo-code

Design pattern 3

17

response1
request2
response2
…

requestN
responseN
post-requests

}



3. Serial synchronous requests

Sequence diagram

request1

serverclient

18

response1

browser locked

request2

response2

requestN

responseN



function f() {

pre-requests

request1
}

function f’1() {

response1
request2

4. Serial asynchronous requests

Pseudo-code

Design pattern 4

function f() {

pre-requests

request1
response1

19

request2
}

function f’2() {

response2
request3

}

…

function f’N() {

responseN
post-requests

}

response1
request2
response2
…

requestN
responseN
post-requests

}

Take the synchronous (Design pattern 3) 

and apply Rule #1 to get the 

asynchronous (Design pattern 4)



4. Serial asynchronous requests

Sequence diagram

serverclient

request1

browser not locked

browser locked

handler1 handler2 handlerN

20

response1

response2

responseN

request2

requestN

browser not locked

browser locked

browser not locked

browser locked

browser not locked

browser locked



Parallel requests

Definition

• We can also write code to send multiple 

requests in parallel. The browser sends all 

the requests at once (not exactly 

concurrently but in cascade), then receives 

the responses in random order.

21

the responses in random order.

• By definition, parallel XmlHttpRequests can 

only be asynchronous, not synchronous.

• Parallel is ideal when the server can handle 

multiple requests at once.

• But with parallel, the requests must not 

depend on the responses, and the order in 

which the responses are received must not 

matter.



Parallel synchronous requests

22

N/A



function f() {

pre-requests

request1
request2
…

requestN
}

function f’1() {

response1
if (N responses handled) {

f’’()

5. Parallel asynchronous requests

Pseudo-code

Design pattern 5

function f() {

pre-requests

request1
request2
…

requestN
i = 0

}

function f’1() {

response1
i++

if (i == N) {

f’’()

23

}

}

function f’2() {

response2
if (N responses handled) {

f’’()

}

}

…

function f’N() {

responseN
if (N responses handled) {

f’’()

}

}

function f’’() {

post-requests

}

}

}

function f’2() {

response2
i++

if (i == N) {

f’’()

}

}

…

function f’N() {

responseN
i++

if (i == N) {

f’’()

}

}

function f’’() {

post-requests

}

Variation



5. Parallel asynchronous requests

Sequence diagram

serverclient

request1

request2

request

handleri handlerj handlerk

24

responsej

Browser not locked
any code

requestN

responsei

responsek



Conditional statements

25

Conditional statements
if-then-else, switch



6. Synchronous if-then-else of one request

Pseudo-code

function f() {

pre-if

if (condition) {

26

request

response

} else {

something

}

post-if

}



function f() {

pre-if

if (condition1) {

request1
response1

} else if (condition2) {

request2

6. Synchronous if-then-else

Pseudo-code

Design pattern 6

27

request2
response2

…

} else if (conditionN) {

requestN
responseN

} else {

something

}

post-if

}



7. Asynchronous if-then-else of one request

Pseudo-code

function f() {

pre-if

if (condition) {

request

} else {

function f() {

pre-if

if (condition) {

request

} else {

something

f’’()

function f() {

pre-if

if (condition) {

request

} else {

function f() {

pre-if

if (condition) {

request

28

} else {

something

post-if

}

}

function f’() {

response

post-if

}

Correct split & copy

f’’()

}

}

function f’() {

response

f’’()

}

function f’’(){

post-if

}

Variation of correct

split & copy

} else {

something

}

post-if

}

function f’() {

response

post-if

}

Incorrect copy

response

} else {

something

}

post-if

}

Split the synchronous (Design 

pattern 6) and copy the post-

if to get the asynchronous 

(Design pattern 7)

Rule #2



function f() {

pre-if

if (condition1) {

request1
} else if (condition2) {

request2

…

} else if (conditionN) {

requestN
} else {

something

f’’()

7. Asynchronous if-then-else

Pseudo-code

Design pattern 7

29

f’’()

}

}

function f’1() {

response1
f’’()

}

function f’2() {

response2
f’’()

}

…

function f’N() {

responseN
f’’()

}

function f’’() {

post-if

}



8. Synchronous switch

Pseudo-code

function f() {

pre-switch

switch(expression) {

case i:

requesti
responsei

Design pattern 8

30

i

break

case j:

requestj
responsej
break

default:

something

}

post-switch

}



9. Asynchronous switch

Pseudo-code

function f() {

pre-switch

switch(expression) {

case i:

requesti
break

case j:

requestj
break

default:

Design pattern 9

function f() {

pre-switch

switch(expression) {

case i:

requesti

31

default:

something

f’’()

}

}

function f’i() {

responsei
f’’()

}

function f’j() {

responsej
f’’()

}

function f’’() {

post-switch

}

i

responsei
break

case j:

requestj
responsej
break

default:

something

}

post-switch

}

Take the synchronous (Design pattern 

8) and apply Rules #1 and #2 to get 

the asynchronous (Design pattern 9)



Loop statements

32

Loop statements
for, while, do-while



function f() {

pre-for

10. Serial synchronous for

Pseudo-code

Design pattern 10

33

for(initialExpression; condition; incrementExpression) {

request

response

}

post-for

}



10. Serial synchronous for

Pseudo-code

function f() {

pre-for

initialExpression

f’()

}

function f’()

if (condition) {

request

34

request

response

incrementExpression

f’()

} else {

f’’()

}

}

function f’’() {

post-for

}

Variation



function f() {

pre-for

initialExpression

f’()

}

function f’()

if (condition) {

request

11. Serial asynchronous for

Pseudo-code

Design pattern 11

function f() {

pre-for

initialExpression

f’()

}

function f’()

if (condition) {

35

} else {

f’’’()

}

}

function f’’() {

response

incrementExpression

f’()

}

function f’’’() {

post-for

}

if (condition) {

request

response

incrementExpression

f’()

} else {

f’’()

}

}

function f’’() {

post-for

}

Take the synchronous (Design pattern 

10) and apply Rules #1 and #2 to get 

the asynchronous (Design pattern 11)



Parallel synchronous for

36

N/A



function f() {

pre-for

for(initialExpression; condition; incrementExpression) {

request

}

}

12. Parallel asynchronous for

Pseudo-code

Design pattern 12

37

function f’() {

response

if (all responses handled) {

f’’()

}

}

function f’’() {

post-for

}



function f() {

pre-for

i = j = 0

for(initialExpression; condition; incrementExpression) {

request

i++

}

}

12. Parallel asynchronous for

Pseudo-code

38

function f’() {

response

j++

if (i == j) {

f’’()

}

}

function f’’() {

post-for

}

Variation



function f() {

pre-while

13. Serial synchronous while

Pseudo-code

Design pattern 13

function f() {

pre-while

f’()

}

function f’() {

if (condition) {

39

pre-while

while(condition) {

request

response

}

post-while

}

if (condition) {

request

response

f’()

} else {

f’’()

}

}

function f’’() {

post-while

}

Variation



function f() {

pre-while

f’()

}

function f’()

if (condition) {

request

} else {

14. Serial asynchronous while

Pseudo-code

Design pattern 14

function f() {

pre-while

f’()

}

function f’() {

if (condition) {

40

} else {

f’’’()

}

}

function f’’() {

response

f’()

}

function f’’’() {

post-while

}

if (condition) {

request

response

f’()

} else {

f’’()

}

}

function f’’() {

post-while

}

Take the synchronous (Design pattern 

13) and apply Rules #1 and #2 to get 

the asynchronous (Design pattern 14)



Parallel synchronous while

41

N/A



15. Parallel asynchronous while

Pseudo-code

function f() {

pre-while

while(condition) {

request

}

}

Design pattern 15

function f() {

pre-while

i = j = 0

while(condition) {

request

i++

}

42

}

function f’() {

response

if (all responses handled) {

f’’()

}

}

function f’’() {

post-while

}

}

}

function f’() {

response

j++

if (i == j) {

f’’()

}

}

function f’’() {

post-while

}

Variation



16. Serial synchronous do-while

Pseudo-code

function f() {

pre-while

Design pattern 16

function f() {

pre-while

f’()

}

function f’() {

request

43

do {

request

response

} while(condition)

post-while

}

response

if (condition) {

f’()

} else {

f’’()

}

}

function f’’() {

post-while

}

Variation



17. Serial asynchronous do-while

Pseudo-code

function f() {

pre-while

f’()

}

function f’() {

request

}

Design pattern 17

function f() {

pre-while

f’()

}

function f’() {

request

44

}

function f’’() {

response

if (condition) {

f’()

} else {

f’’’()

}

}

function f’’’() {

post-while

}

request

response

if (condition) {

f’()

} else {

f’’()

}

}

function f’’() {

post-while

}

Take the synchronous (Design pattern 

16) and apply Rules #1 and #2 to get 

the asynchronous (Design pattern 17)



Parallel synchronous do-while

45

N/A



18. Parallel asynchronous do-while

Pseudo-code

function f() {

pre-while

do {

request

} while(condition)

}

Design pattern 18

function f() {

pre-while

i = j = 0

do {

request

i++

} while(condition)

46

}

function f’() {

response

if (all responses handled) {

f’’()

}

}

function f’’() {

post-while

}

Variation

} while(condition)

}

function f’() {

response

j++

if (i == j) {

f’’()

}

}

function f’’() {

post-while

}



• A for of one iteration is like a single request

• A while is like a for without initialExpression 

and without incrementExpression

• A do-while with a condition equal to false is 

Verifications

47

• A do-while with a condition equal to false is 

like a single request

• A single if with a condition equal to true is 

like a single request

• Multiple if-then-else with all conditions 

equal to true is like multiple serial requests



When to choose which pattern?

• Are you able to write complex code? In which case you

won’t be afraid of coding multiple asynchronous and

parallel requests. Or is readability and maintainability

more important? In which case classic synchronous

requests are preferred.

• Is feedback important for the user (indicate activity, show

progress)? In which case asynchronous MUST be used. Or

48

progress)? In which case asynchronous MUST be used. Or

can the browser just hang? In which case synchronous

CAN be used.

• Can the server handle concurrent requests? In which

case parallel processing CAN be used. Or will it accept the

first request, lock the resources, and reject the other

requests? In which case serial processing MUST be used.

• Do the requests depend on previous responses? In which

case serial processing MUST be used.



General considerations

• It’s recommended to execute business logic close to the

source, on the server-side (ex: ERP), or perhaps on the

middleware (ex: WebSphere). But sometimes there’s no

other choice than to execute it on the client-side (ex:

XmlHttpRequests)

• Parallel requests are not exactly concurrent. They are

done in steps. The maximum number of open

49

done in steps. The maximum number of open

connections depends on the client. It’s usually two as

recommended in the HTTP RFC.

• The implementation of the Design patterns depends on

the programming language, on the browser, and on the

developer

• Exceptions must be handled otherwise patterns fail

• Use setTimeout() as jump statements to avoid exception

propagation and stack overflow (?)



Future work

• Exception handling

Operators, expressions

50

• Operators, expressions

• Boolean algebra

• Finite State Machine

• Virtual CPU



Conclusion

I started by determining what is the relevant variable

involved in executing a single XmlHttpRequest, it is

synchronicity (synchronous or asynchronous). I then

determined what is the relevant variable involved in

executing two XmlHttpRequests, it is the type of

transmission (serial or parallel). I then determined two

rules to pass from synchronous to asynchronous.

Equipped with these two variables and two rules I was

able to determine how to execute any arbitrary number

51

able to determine how to execute any arbitrary number

of intricate XmlHttpRequests like in conditional

statements and in loop statements.

Now, the resulting 18 design patterns allow me to write

code that has the optimal usability, increased quality

and robustness. But it may be at the cost of readability.

By answering a few simple questions I can also

determine what is the best design pattern for any given

case.

As the tutorials and documentation available on the

Internet do not cover these cases I hope that

developers will find this paper useful. Perhaps, one day

AJAX frameworks and tools will provide the same.



References

• The XMLHttpRequest Object

http://www.w3.org/TR/XMLHttpRequest

• AJAX Design Patterns

http://codeidol.com/ajax/ajaxdp/

• Ajax Mistakes

http://swik.net/Ajax/Ajax+Mistakes

• Asynchronous I/O

http://en.wikipedia.org/wiki/Asynchronous_I/O

• Asynchronous Request Processing Framework

http://www.jcorporate.com/expresso/doc/edg/edg_asyncp

rocess.html

• Functional programming

http://www.stanford.edu/class/cs242/readings/backus.pdf

• [OOP] Bertrand Meyer, Object Oriented Programming

• XMLHttpRequest Usability Guidelines

http://www.baekdal.com/articles/Usability/XMLHttpReques

t-guidelines/

• Design Patterns for AJAX Usability

http://www.softwareas.com/ajax-patterns

• Solution Required for Problem in "Ajax in Struts-based Web 

Application“

http://today.java.net/cs/user/create/cs_msg?x-

lr=cs_msg/17186&x-lr2=a/219

• Handling Multiple XMLHTTPRequest Objects

http://drakware.com/?e=2

• Multiple XMLHTTPRequest Objects Redux

http://drakware.com/?e=3

52

• Usable XMLHttpRequest in Practice

http://www.baekdal.com/articles/usability/usable-

XMLHttpRequest/

• Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616

http://www.ietf.org/rfc/rfc2616.txt

• Sequence

http://en.wikipedia.org/wiki/Sequence

• Service-oriented architecture (SOA)

http://en.wikipedia.org/wiki/Service-oriented_architecture

• Business Process Execution Language (BPEL)

http://en.wikipedia.org/wiki/Business_Process_Execution_L

anguage

• Orchestration (computers)

http://en.wikipedia.org/wiki/Orchestration_(computers)

• Web Service Choreography

http://en.wikipedia.org/wiki/Web_Service_Choreography

• XMLHttpRequest: Cross-browser implementation with 

sniffing capabilities

http://www.ilinsky.com/articles/XMLHttpRequest/

http://drakware.com/?e=3

• Multiple XHR requests (AJAX)

http://www.digitalbonsai.com/xhrmulti.php

• Multiple XMLHttpRequest 2

http://www.digitalbonsai.com/?itemid=5

• Foldblog: Handling Multiple XHRs

http://ajaxian.com/archives/foldblog-handling-multiple-xhrs

http://foldblog.blogspot.com/2006/01/ajax-handling-

multiple-xmlhttprequests.html

• Introduction to Ajax, 13. Multiple Requests

http://javascript.about.com/library/blajax13.htm

• Making simultaneous AJAX requests

http://dominounlimited.blogspot.com/2006/08/making-

simultaneous-ajax-requests.html

• Concurrent Ajax

http://www.hunlock.com/blogs/Concurrent_Ajax

http://p2p.wrox.com/topic.asp?TOPIC_ID=36547


